
Uni.lu HPC School 2019
PS07: Scientific computing using

MATLAB

Uni.lu High Performance Computing (HPC) Team
V. Plugaru

University of Luxembourg (UL), Luxembourg
http://hpc.uni.lu

1 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/
http://www.uni.lu
http://hpc.uni.lu
https://hpc.uni.lu/hpc-school/

Latest versions available on Github:

UL HPC tutorials: https://github.com/ULHPC/tutorials

UL HPC School: http://hpc.uni.lu/hpc-school/

PS07 tutorial sources:
https://ulhpc-tutorials.rtfd.io.rtfd.io/en/latest/maths/matlab/basics/

2 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://github.com/ULHPC/tutorials
https://github.com/ULHPC/tutorials
http://hpc.uni.lu/hpc-school/
https://https://ulhpc-tutorials.rtfd.io.readthedocs.io/en/latest/maths/matlab/basics/
https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Summary

1 Practical Session Objectives

2 MATLAB on UL HPC
Prerequisites
Using MATLAB

3 Conclusion

3 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Session Objectives
Better understand the usage of MATLAB on the Uni.lu HPC Platform

running in interactive mode
↪→ with either the full graphical or the text-mode interface
↪→ graphical web portal based on OnDemand coming soon

running in passive mode
↪→ several ways of submitting MATLAB jobs
↪→ example launchers for SLURM

checking available toolboxes & licenses status

using script (.m) files

plotting data, saving the plots to file

4 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://github.com/OSC/Open-OnDemand
https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Session Objectives
Better understand the usage of MATLAB on the Uni.lu HPC Platform

running in interactive mode
↪→ with either the full graphical or the text-mode interface
↪→ graphical web portal based on OnDemand coming soon

running in passive mode
↪→ several ways of submitting MATLAB jobs
↪→ example launchers for SLURM

checking available toolboxes & licenses status

using script (.m) files

plotting data, saving the plots to file

4 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://github.com/OSC/Open-OnDemand
https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Session Objectives
Better understand the usage of MATLAB on the Uni.lu HPC Platform

running in interactive mode
↪→ with either the full graphical or the text-mode interface
↪→ graphical web portal based on OnDemand coming soon

running in passive mode
↪→ several ways of submitting MATLAB jobs
↪→ example launchers for SLURM

checking available toolboxes & licenses status

using script (.m) files

plotting data, saving the plots to file

4 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://github.com/OSC/Open-OnDemand
https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Session Objectives
Better understand the usage of MATLAB on the Uni.lu HPC Platform

running in interactive mode
↪→ with either the full graphical or the text-mode interface
↪→ graphical web portal based on OnDemand coming soon

running in passive mode
↪→ several ways of submitting MATLAB jobs
↪→ example launchers for SLURM

checking available toolboxes & licenses status

using script (.m) files

plotting data, saving the plots to file

4 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://github.com/OSC/Open-OnDemand
https://hpc.uni.lu/hpc-school/

Practical Session Objectives

Session Objectives
Better understand the usage of MATLAB on the Uni.lu HPC Platform

running in interactive mode
↪→ with either the full graphical or the text-mode interface
↪→ graphical web portal based on OnDemand coming soon

running in passive mode
↪→ several ways of submitting MATLAB jobs
↪→ example launchers for SLURM

checking available toolboxes & licenses status

using script (.m) files

plotting data, saving the plots to file

4 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://github.com/OSC/Open-OnDemand
https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Summary

1 Practical Session Objectives

2 MATLAB on UL HPC
Prerequisites
Using MATLAB

3 Conclusion

5 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Tutorial files
Sample MATLAB scripts used in the tutorial

download only the scripts

mkdir $HOME/matlab-tutorial
cd $HOME/matlab-tutorial
wget https://raw.github.com/ULHPC/tutorials/devel/maths/\

matlab/basics/code/
example1.m
example2.m
google_finance_data.m
file_data_source.m
AAPL.csv

or download the full repository and link to the MATLAB tutorial

git clone https://github.com/ULHPC/tutorials.git
ln -s tutorials/maths/matlab/basics $HOME/matlab-tutorial

6 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

X Window System

In order to see locally the MATLAB graphical interface,
a package providing the X Window System is required:

on OS X: XQuartz http://xquartz.macosforge.org/landing/

on Windows:
↪→ in combination with Putty: VcXsrv http://sourceforge.net/projects/vcxsrv/

↪→ with MobaXTerm: nothing additional needed

Now you will be able to connect with X11 forwarding enabled:

on Linux & macOS: ssh iris-cluster -X
on Windows

↪→ with Putty: Connection → SSH → X11 → Enable X11 forwarding
↪→ with MobaXTerm: remote GUI applications should work by default

7 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://xquartz.macosforge.org/landing/
http://sourceforge.net/projects/vcxsrv/
https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Scripts and plots

example1.m: non-interactive script that shows
the use of a stopwatch timer
how to use an external function (financial data retrieval)
how to use different plotting methods
how to export the plots in different graphic formats

12/02 01/21 03/11 04/30 06/19 08/08 09/27 11/16 01/05

Date

90

95

100

105

110

115

120

P
ri
c
e

 (
U

S
D

)

Closing stock prices for AAPL between 4-Jan-16 and 30-Dec-16

0

120

2

4

6

17/01/05

10
7

T
ra

d
in

g
 v

o
lu

m
e

110

8

10

16/09/27

Closing stock prices and trading volumes for AAPL between 4-Jan-16 and 30-Dec-16

Price (USD)

12

Date

16/06/19

14

100

16/03/11

90 15/12/02

8 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Parallelization

example2.m: non-interactive script that shows

the serial execution of time consuming operations

and revisited in the second part of the tutorial:
↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Number of cores

P
a

ra
lle

l
s
p

e
e

d
u

p

parfor−based parallel speedup vs serial execution

speedup

speedup with overhead

9 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Parallelization

example2.m: non-interactive script that shows

the serial execution of time consuming operations
and revisited in the second part of the tutorial:

↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Number of cores

P
a

ra
lle

l
s
p

e
e

d
u

p

parfor−based parallel speedup vs serial execution

speedup

speedup with overhead

9 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Beyond simple executions

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting parallel code with checkpoint/restart features

10 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Beyond simple executions

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting parallel code with checkpoint/restart features

10 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Beyond simple executions

application-level checkpointing
↪→ using in-built MATLAB functions

taking advantage of some parallelization capabilities
↪→ use of parfor
↪→ use of GPU-enabled functions

adapting parallel code with checkpoint/restart features

10 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing

What is it?

Technique for adding fault tolerance to your application.
You adapt your code to (regularly) save a snapshot of the
environment (workspace)
. . . and restart execution from the snapshot in case of failure.

Why make the effort to checkpoint?

because your code may take longer to execute than the
maximum walltime allowed
because losing (precious) hours or days of computation when
something fails may (should!) not be acceptable

11 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing

What is it?

Technique for adding fault tolerance to your application.
You adapt your code to (regularly) save a snapshot of the
environment (workspace)
. . . and restart execution from the snapshot in case of failure.

Why make the effort to checkpoint?

because your code may take longer to execute than the
maximum walltime allowed
because losing (precious) hours or days of computation when
something fails may (should!) not be acceptable

11 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing pitfalls

checkpointing (too) often can be counterproductive
↪→ saving state in each loop may take longer than its actual

computing time
↪→ saving state incrementally can lead to fast exhaustion of your

$HOME space
↪→ in extreme cases can lead to platform instability – especially if

running parallel jobs!

checkpointing (especially parallel) code can be tricky
extra-care required if checkpointing simulations involving PRNG
(e.g. Monte Carlo-based experiments)
ensure results consistency after you add checkpointing

12 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing pitfalls

checkpointing (too) often can be counterproductive
↪→ saving state in each loop may take longer than its actual

computing time
↪→ saving state incrementally can lead to fast exhaustion of your

$HOME space
↪→ in extreme cases can lead to platform instability – especially if

running parallel jobs!

checkpointing (especially parallel) code can be tricky
extra-care required if checkpointing simulations involving PRNG
(e.g. Monte Carlo-based experiments)
ensure results consistency after you add checkpointing

12 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

13 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

13 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

13 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Checkpointing basics

11 Check that a checkpoint file exists: exist(’save.mat’,’file’)

22 If it exists, restore workspace data from it: load(’save.mat’)

33 During computing steps, use control variables to direct (re)start of
computation

44 Every n loops, or if execution time (in loop or since startup) is
above threshold, checkpoint:

↪→ save full workspace state: save(’save.tmp’)

↪→ save partial state: save(’save.tmp’, ’var1’, ’var2’)

55 Rename state file to final name: system(’mv save.tmp save.mat’)

↪→ this process ensures that in case of failure during checkpointing,
next execution doesn’t try to restart from incomplete state

13 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

When to trigger checkpointing?

when (loop) execution time is above threshold (e.g. 1h):
↪→ use tic and toc stopwatch functions, remember they can be

assigned to variables
↪→ use the clock function
↪→ add some randomness to the threshold if you run several instances

in parallel!

every n loop executions
↪→ remember that saving state takes time, depending on workspace

size & shared filesystem usage, and
↪→ if loops finish fast your code may be slowed down considerably
↪→ add some randomness to n if you run several instances in parallel!

14 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

When to trigger checkpointing?

when (loop) execution time is above threshold (e.g. 1h):
↪→ use tic and toc stopwatch functions, remember they can be

assigned to variables
↪→ use the clock function
↪→ add some randomness to the threshold if you run several instances

in parallel!

every n loop executions
↪→ remember that saving state takes time, depending on workspace

size & shared filesystem usage, and
↪→ if loops finish fast your code may be slowed down considerably
↪→ add some randomness to n if you run several instances in parallel!

14 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Adding checkpointing to seq. code

example1.m: non-interactive script that shows
the use of a stopwatch timer
how to use an external function (financial data retrieval)
how to use different plotting methods
how to export the plots in different graphic formats

Tasks to tackle with checkpointing
modify the script to download data for Fortune100 companies
add & test checkpointing to save state after each company’s
data is downloaded
more granular downloads - modify download period from 1 year
to 1 month, add & test checkpointing to save state after each
download

15 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Ref. documentation - parallelization

Parallel Computing Toolbox
http://www.mathworks.nl/help/distcomp/index.html

Parallel for-Loops (parfor)
http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html

GPU Computing
http://www.mathworks.nl/discovery/matlab-gpu.html

Multi-GPU computing examples
https://nl.mathworks.com/help/parallel-computing/examples/

run-matlab-functions-on-multiple-gpus.html

16 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://www.mathworks.nl/help/distcomp/index.html
http://www.mathworks.nl/help/distcomp/getting-started-with-parfor.html
http://www.mathworks.nl/discovery/matlab-gpu.html
https://nl.mathworks.com/help/parallel-computing/examples/run-matlab-functions-on-multiple-gpus.html
https://nl.mathworks.com/help/parallel-computing/examples/run-matlab-functions-on-multiple-gpus.html
https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Accelerating the time to result

Option 1: Split input over several parallel, independent jobs
↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ Iris bigmem partition nodes with 112 cores for big problems

Option 3: Use GPU-enabled functions that work on the gpuArray
data type

↪→ require the code to be run on GPU nodes (subset of Iris)
↪→ great speedup for some workloads
↪→ multiple hundreds of in-built MATLAB functions work on gpuArray

X including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the MATLAB license

17 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Accelerating the time to result

Option 1: Split input over several parallel, independent jobs
↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ Iris bigmem partition nodes with 112 cores for big problems

Option 3: Use GPU-enabled functions that work on the gpuArray
data type

↪→ require the code to be run on GPU nodes (subset of Iris)
↪→ great speedup for some workloads
↪→ multiple hundreds of in-built MATLAB functions work on gpuArray

X including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the MATLAB license

17 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Accelerating the time to result

Option 1: Split input over several parallel, independent jobs
↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ Iris bigmem partition nodes with 112 cores for big problems

Option 3: Use GPU-enabled functions that work on the gpuArray
data type

↪→ require the code to be run on GPU nodes (subset of Iris)
↪→ great speedup for some workloads
↪→ multiple hundreds of in-built MATLAB functions work on gpuArray

X including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the MATLAB license

17 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Accelerating the time to result

Option 1: Split input over several parallel, independent jobs
↪→ great if it’s possible (embarrassingly parallel problem)

Option 2: Use parfor to execute loop iterations in parallel
↪→ single node only
↪→ Iris bigmem partition nodes with 112 cores for big problems

Option 3: Use GPU-enabled functions that work on the gpuArray
data type

↪→ require the code to be run on GPU nodes (subset of Iris)
↪→ great speedup for some workloads
↪→ multiple hundreds of in-built MATLAB functions work on gpuArray

X including discrete Fourier transform, matrix multiplication, left matrix division

Option 4: MATLAB Distributed Computing Server (MDCS)
↪→ allows multi-node parallel execution
↪→ not yet part of the MATLAB license

17 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Speed up your seq. code

example2.m: non-interactive script that shows
the serial execution of time consuming operations

and revisited in the second part of the tutorial:
↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

18 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Speed up your seq. code

example2.m: non-interactive script that shows
the serial execution of time consuming operations
and revisited in the second part of the tutorial:

↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

6

Number of cores

P
a

ra
lle

l
s
p

e
e

d
u

p

parfor−based parallel speedup vs serial execution

speedup

speedup with overhead

18 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

MATLAB on UL HPC

Speed up your seq. code

example2.m: non-interactive script that shows
the serial execution of time consuming operations
and revisited in the second part of the tutorial:

↪→ the parallel execution and relative speedup vs serial execution
↪→ setting the # of parallel threads through environment variables
↪→ GPU-based parallel execution

Tasks to tackle

execute the script on regular vs GPU nodes (with diff. GPUs)
increase # of iterations, matrix size
increase # of workers with/out changing # of req. cores
modify the script with other GPU-enabled functions

18 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

Conclusion

Summary

1 Practical Session Objectives

2 MATLAB on UL HPC
Prerequisites
Using MATLAB

3 Conclusion

19 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

Conclusion

Exercises - your mission today

Read and understand the MATLAB tutorial
https://github.com/ULHPC/tutorials/tree/devel/maths/matlab

↪→ all provided scripts are fully commented

Run all the examples
↪→ launching interactive/passive mode MATLAB
↪→ plotting script
↪→ parallel execution script

20 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://github.com/ULHPC/tutorials/tree/devel/maths/matlab
https://hpc.uni.lu/hpc-school/

Conclusion

Useful links

Getting Started with Parallel Computing Toolbox

http://nl.mathworks.com/help/distcomp/getting-started-with-parallel-computing-toolbox.html

Parallel for-Loops (parfor) documentation

https://nl.mathworks.com/help/distcomp/parfor.html

GPU Computing documentation

https://nl.mathworks.com/discovery/matlab-gpu.html

Multi-GPU computing examples

https:

//nl.mathworks.com/help/parallel-computing/examples/run-matlab-functions-on-multiple-gpus.html

21 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://nl.mathworks.com/help/distcomp/getting-started-with-parallel-computing-toolbox.html
https://nl.mathworks.com/help/distcomp/parfor.html
https://nl.mathworks.com/discovery/matlab-gpu.html
https://nl.mathworks.com/help/parallel-computing/examples/run-matlab-functions-on-multiple-gpus.html
https://nl.mathworks.com/help/parallel-computing/examples/run-matlab-functions-on-multiple-gpus.html
https://hpc.uni.lu/hpc-school/

Conclusion

What we’ve seen so far (I)

MATLAB execution modes on the Uni.lu HPC Platform
Checking for available toolboxes and licenses
Basics of plotting

Perspectives

Personalize the UL HPC launchers with the MATLAB commands
Check example #2 M-file for insight into basic parallel execution
Parallelize your own tasks using parfor/GPU-enabled instructions

22 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
https://hpc.uni.lu/hpc-school/

Conclusion

What we’ve seen so far (II)

Checkpointing basics
Specific MATLAB instructions for checkpointing
MATLAB parallelization capabilities

Perspectives

(incrementally) modify your own MATLAB code for fault
tolerance
parallelize your own tasks using parfor/GPU-enabled instructions

23 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

https://hpc.uni.lu/hpc-school/

Thank you for your attention...

Questions? http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry
Dr. Sebastien Varrette
Valentin Plugaru
Sarah Peter
Hyacinthe Cartiaux
Clement Parisot
Dr. FrÃľderic Pinel
Dr. Emmanuel Kieffer

University of Luxembourg, Belval Campus
Maison du Nombre, 4th floor
2, avenue de l’Université
L-4365 Esch-sur-Alzette
mail: hpc@uni.lu

1 Practical Session Objectives

2 MATLAB on UL HPC

Prerequisites
Using MATLAB

3 Conclusion

24 / 24
V. Plugaru & Uni.lu HPC Team (University of Luxembourg) Uni.lu HPC School 2019/ PS07

N

http://hpc.uni.lu
mailto:hpc@uni.lu
https://hpc.uni.lu/hpc-school/

	Practical Session Objectives
	MATLAB on UL HPC
	Prerequisites
	Using MATLAB

	Conclusion

